热处理棕褐色电气石光谱学特征与颜色成因初探

岳素伟^{1,2}, 剡晓旭^{1,2*}, 林佳淇¹, 王沛炼^{1,2}, 刘军锋³

1. 广州城市理工学院珠宝学院, 广东 广州 510800

2. 广州城市理工学院珠宝研究所, 广东 广州 510800

3. 周大福珠宝金行(深圳)有限公司珠宝检验中心, 广东 深圳 518081

摘 要 电气石属三方晶系的硼铝硅酸盐,主要有铁电气石、锂电气石、镁电气石、钠-锰电气石等品种,因 含不同的过渡元素或色心而呈绿、蓝、黄、红、粉、棕和黑色。选取棕褐色电气石样品在还原和中性气氛加 热 3 h,结果显示,600 ℃晶体出现大量裂隙;500 和 450 ℃棕褐色调减弱,透明度大大提升,500 ℃裂隙稍 多;350 ℃加热,样品变绿黄棕色;250 ℃加热样品略微变浅,仍为棕褐色调;加热后//c轴切面见明显绿色 与棕色二色性,垂直 c 轴切面,即{0001}面,为棕色;综合显示,最佳变色温度在 450~500 ℃。利用 X 射线 荧光光谱(XRF)、红外吸收光谱(IR)和紫外-可见光吸收光谱(UV-Vis)对热处理前后样品进行分析,样品属 于富 Mn 和 Fe 的锂电气石。样品中红外特征吸收峰在 3 800~3 400, 1 350~1 250, 1 200~800 与 800 cm⁻¹,近红外光谱有4720,4597,4537,4441,4343,4203和4170 cm⁻¹特征峰。热处理后,由M-OH (M 为 Al, Mg, Fe 和 Mn 等)伸缩和弯曲振动所致的 3 800~3 400 cm⁻¹吸收峰减弱, 600 ℃消失, 与加热失 水行为导致的结构水弯曲/伸缩振动减弱有关;近红外光谱4170和4720 cm⁻¹吸收消失。棕褐色电气石在 // c 轴切面的可见光范围内具有 715,540 和 417 nm 吸收带,依次为 Fe²⁺ d—d(⁵ T_{2g}→⁵ E_g)跃迁、Fe²⁺ → Fe³⁺ (IVCT)、Fe²⁺ →Ti⁴⁺ (IVCT)所致。样品具有高的 Mn 含量,417 nm 附近的吸收可能存在 Mn²⁺ d-d (⁶A_{1a}→⁴A_{1a}, ⁴T_{Ea})自旋禁阻跃迁产生的 413/414 nm 叠加。热处理使 Mn³⁺ 还原成 Mn²⁺, Mn²⁺ 增加导致 414 nm 吸收峰增强,因此 417 nm 附近吸收带变化不大。同时,热处理后与 Mn³⁺ 有关的 520 nm 吸收也同时 消失,520 nm 吸收带的存在也可能是 540 nm 吸收带呈非对称吸收峰的原因。450 ℃以上热处理后,715 和 417 nm 吸收带变化不大,位于绿光区的 540 nm 吸收带消失,分析认为加热使得部分 Fe³⁺ 还原为 Fe²⁺,导 致 Fe²⁺→Fe³⁺ (IVCT)减少, 在 // c 轴切面上 540 nm 吸收显著减弱。540 nm 吸收带在绿色光区域, 其消失导 致绿色光透过,样品呈绿色。

关键词 棕褐色电气石;热处理;X射线荧光光谱;红外光谱;紫外-可见光谱 DOI: 10.3964/j.issn.1000-0593(2021)08-2524-06 中图分类号: P575.4 文献标识码:A

引 言

电气石是一种含羟基和氟离子的环状硅酸盐,主要包括 铁电气石、锂电气石、镁电气石、钠-锰电气石等品种,化学 式为 $XY_3Z_6Si_6O_{18}$ (BO₃)₃ VW, X 为 Na⁺, Ca²⁺, K⁺, Y 为 Mg^{2+} , Fe^{2+} , Mn^{2+} , Al^{3+} , Fe^{3+} , Mn^{3+} , Cr^{3+} , Li^+ , Ti^{4+} , Z为 Al^{3+} , Mg^{2+} , Cr^{3+} , V^{3+} , 而 V 为 O^{2-} , OH^{-} , W 为 $O^{2^{-}}$, OH^{-} , $F^{-[1-2]}$ 。常见绿色、蓝色、黄色、红色、粉色、 棕色和黑色,由不同过渡元素或色心所致[3]。电气石颜色是 影响其品质和价格的重要因素之一,其中霓虹蓝色的含铜电 气石、深绿色的含铁和含铬电气石以及粉红色和黄色的含锰 电气石深受消费者喜爱[4-6]。随着宝石级电气石资源的不断 开发,质量上乘者日趋稀少,通过热处理工艺可以稳定提升 低品质电气石的透明度和改变色调,达到合理利用不可再生 资源及增加低品质电气石利润之目的。作为最常见的改色方 法,热处理是指通过人工控制温度、气氛、恒温时间等,改 善或改变珠宝玉石的颜色、净度和或特殊光学效应,产生的

作者简介: 岳素伟, 1985年生, 广州城市理工学院珠宝学院副教授 * 通讯作者 e-mail: yanxiaoxu@gcu.edu.cn

e-mail: yuesuwei@gcu.edu.cn

收稿日期: 2020-07-19,修订日期: 2020-11-20

基金项目: 国家自然科学基金项目(41403032), 广东省教育厅特色科研类项目(CQ180002)和华南理工大学广州学院优博项目(YB1700001) 资助

效果稳定。

有报道对不同品种的电气石进行不同气氛热处理研究^[7+9],结果显示,热处理可以普遍改善电气石透明度,增加 或去除浅色电气石色调,分别将棕褐色、红褐色和黄色改变 为绿色、霓虹蓝色和深红色^[1,7,10-12]。但由于电气石中 Mn, Fe和 Cu等过渡金属元素的阳离子价态及晶格中赋存状态不 同,颜色改善效果存在较大随机性。因此,研究热处理工艺 稳定获得高品质电气石具有更好的理论意义和实践价值。

研究中选取棕褐色电气石进行热处理,旨在探求颜色改善最佳工艺条件,同时利用 X 射线荧光光谱(XRF)、红外光谱(IR)与紫外-可见吸收光谱(UV-Vis)分析,探究其热处理后颜色变化的内在机理。

1 实验部分

1.1 样品热处理

样品总体呈棕褐色,仔细观察可见褐红色/褐黄色+黄 绿色双色、黄褐色、深褐色和褐红色[图 1(a,b)],浅棕色、 深棕色二色性,折射率 1.620~1.640,双折率 0.020,包裹 体亦少见。设定恒温时间 3~4 h,升温速率 4 ℃・min⁻¹,以 及 600,500,450,350 和 250 ℃共 5 个目标温度对天然样品 分别在中性和还原气氛中进行热处理(表 1)。中性气氛是将 样品置于氧化锆坩埚,均匀埋入二氧化硅粉末,加坩埚盖; 还原气氛是二氧化硅粉末上部添加石墨粉,隔绝氧气,坩埚 盖用粘土密封。

图 1 热处理前后电气石样品特征对比

(a): 样品热处理前后对比; (b): 热处理后 Turl 多色性: // c 轴切面黄绿色+棕色, $\perp c$ 轴切面棕色

Fig. 1 The characteristics comparison of tourmaline unheated and heated samples

(a): Unheated and heated samples; (b): The pleochroism heated sample Turl: yellow green+brown (//c section) and brown ($\perp c$ section)

Table 1Experimental protocol for heating-treatment tourmaline											
热处理方案	样品编号	目标温度	升温速率	恒温时间 /h	左复	颜色					
		/℃	$/(^{\circ}\mathbb{C} \cdot \min^{-1})$		气氛 一	加热前	加热后				
1	Tur1	600	4	4	还原	黄褐色	黄绿色				
	Tur2	600	4	4	还原	黄褐色	绿色				
2	Tur3	500	4	4	还原	褐红色	绿色				
	Tur4	500	4	4	还原	深褐色	黄绿色				
	Tur5	500	4	4	中性	褐红+黄绿色	黄绿色				
	Tur6	500	4	4	中性	褐红+黄绿色	黄绿色				
3	Tur7	450	4	3	还原	褐红+褐黄色	黄绿色				
	Tur8	450	4	3	中性	褐红+褐黄色	黄绿色				
	Tur9	450	4	3	中性	褐红+褐黄色	黄绿色				
4	Tur10	350	4	3	还原	褐红+褐黄色	浅褐红+浅褐黄色				
	Tur11	350	4	3	还原	黄褐色	褐绿				
5	Tur12	250	4	3	还原	褐红色+褐绿色	褐红色+褐绿色				
	Tur13	250	4	3	还原	褐红+褐黄色	浅褐红+褐黄色				

表1 电气石热处理方案

1.2 方法

实验均在广州城市理工学院珠宝学院实验室完成。X射 线荧光光谱采用日本岛津 EDX-LE, Rh 靶, 电压 50 kV, 电 流 100 μA, 半定量测试。使用布鲁克 TENSOR-27 型傅里叶 变换红外光谱仪,采用反射法和透射法,扫描范围分别为 3800~400和4800~4000 cm⁻¹,分辨率均为4 cm⁻¹,次 数:32。紫外-可见光谱采用广州标旗 GEM-3000 紫外-可见 光分光光度计,检测范围:1000~200 nm,信噪比为 450:1, 电压 220 V, 功率 250 W。

2 结果与讨论

2.1 热处理后样品特征

热处理结果显示,在还原和中性气氛中加热3h,600℃ 晶体出现大量裂隙[图1(a),Tur2],应为气液包裹体炸裂或 脱水所致。500和450℃棕褐色调减弱,透明度大大提升, 500℃时裂隙稍多。350℃加热,样品变绿黄棕色,绿色微弱 [图1(a),Tur10];250℃加热样品略微变浅,仍为棕褐色 [图 1(a), Turl1, Turl2]。加热后, // *c* 轴切面见明显绿色 +棕色二色性[图 1(b)], 垂直 *c* 轴切面,即{0001}面,为棕 色[图 1(b)],无二色性。综上,选取的电气石变绿色温度> 350 ℃,而 450~500 ℃、恒温时间约 3 h 和还原气氛是较理 想的条件。

2.2 样品成分

利用 XRF 对样品进行了半定量成分分析(表 2)结果显示,样品属于富含 Mn 和 Fe,含有少量 Ti。同时,对样品的 Li和 B含量进行了计算,根据成分判断,样品应属于富 Mn 和 Fe 的锂电气石。

表 2 电气石样品 X 射线荧光光谱分析 Table 2 X-ray fluorescence spectrometry analysis for tourmaline samples

编号	Tur1	Tur2	Tur3	Tur4	Tur5	Tur6	Tur7	Tur8	Tur9	Tur10	Tur11	Tur12	Tur13
SiO_2	40.48	39.08	41.34	40.82	41.00	40.47	39.85	43.34	40.81	40.51	39.68	40.72	39.43
Al_2O_3	29.60	32.77	27.62	28.85	29.11	28.92	31.26	25.11	30.02	29.71	31.69	30.70	32.72
Fe_2O_3	4.14	3.29	3.63	5.37	3.85	3.60	4.04	3.68	4.01	4.01	3.80	3.23	3.44
MnO	7.03	7.21	8.64	5.98	7.62	8.47	7.22	8.34	6.99	7.18	6.44	7.11	6.71
TiO_2	0.18	0.14	0.13	0.30	0.13	0.34	0.11	0.14	0.12	0.16	0.21	0.15	0.12
CaO	1.08	0.90	1.01	0.83	0.71	0.97	0.62	0.92	0.65	0.98	1.03	0.82	0.79
ZnO	0.27	0.14	0.16	0.43	0.28	0.16	0.11	0.00	0.13	0.25	0.28	0.00	0.14
H_2O^*	3.70	3.70	3.69	3.71	3.70	3.68	3.70	3.71	3.71	3.70	3.71	3.72	3.71
${ m B}_2 { m O}_3$ *	10.72	10.73	10.68	10.74	10.73	10.67	10.73	10.75	10.76	10.73	10.75	10.79	10.77
Li ₂ O*	2.79	2.03	3.11	2.98	2.88	2.72	2.34	4.01	2.79	2.76	2.40	2.76	2.17

注:"*"计算值;铁以 Fe2O3 呈现,代表全铁

(a): 样品 Tur1; (b): 样品 Tur3; (c): 样品 Tur10

(a): Sample Tur1; (b): Sample Tur3; (c): Sample Tur10

2.3 红外光谱

天然样品的中红外光谱吸收峰在3800~3400,1350~ 1250,1200~800 与800 cm⁻¹以下(图2);近红外光谱为 4720,4597,4537,4441,4343,4203和4170 cm⁻¹特征 峰(图3)。

350 ℃及以下加热后,样品红外反射光谱特征变化不大 [图 2(c)]。在经 500 和 600 ℃热处理后特征峰与未处理相 似,各吸收峰减弱[图 2(a, b)],其 3 548,3 636 和 3 800 cm⁻¹吸收峰減弱最为明显,并趋于消失[图 2(a, b)]。近红 外透射光谱透射率略降低,4 170 和 4 720 cm⁻¹吸收消失 (图 3)。

2.4 紫外-可见光吸收光谱

分别测定天然样品 $\perp c$ 轴切面(即 $\{0001\}$ 面)与//c轴切 面,紫外-可见吸收光谱差异明显(图 4)。//c轴切面具 715 和 540 nm 宽吸收带和 417, 378 和 395 nm 窄吸收带。540 nm 非对称吸收向短波方向增强,波峰倾斜(图 4)。红外区有 976 nm 吸收峰,紫外区见 350 nm 肩峰和 260 nm 吸收峰。 $\perp c$ 轴 切面吸收较弱,560,680 和 790 nm 附近弱吸收带(图 4),缺 失976 nm。

热处理样品 // c 轴切面, 250 ℃加热后基本不变[图 4 (a)]; 350 ℃时 540 nm 吸收减弱[图 4(b)]; ≥450 ℃时,除 540 nm 吸收消失外, 715 nm 吸收增强,中心移至 730 nm, 半波宽收窄[图 4(c—f)]; 976 nm 吸收峰在 450 ℃以上变为 肩峰[图 4(c—f)]; 395 nm 吸收略微减弱, 378 nm 大多都有 所增强,尤其在 500 ℃以上尤为明显[图 4(d—f)]; 260 nm 吸收峰变为 268 nm 的肩峰。 $_c$ 轴切面,变化不大, 560 nm 宽吸收向低波长移至 550 nm[图 4(e, f)]。

2.5 热处理样品的鉴别

锂电气石一铁电气石在 3 700~3 400 cm⁻¹ 是 M—OH (M为Al, Mg, Fe和Mn等)伸缩和弯曲振动^[1], 3 636 cm⁻¹ 归属为OH₁—Fe^yFe^y(Fe, Mn)^Y, 3 595 cm⁻¹ 归属为OH₁-Li^YAl^Y(Fe, Mn)^Y, 3 548 cm⁻¹ 为OH₃(Fe, Mn)^YAl^ZAl^Z, 3 438 cm⁻¹ 为OH₃-(Al, Li)^YAl^ZAl^Z 所致。1 352 和 1 299 cm⁻¹ 由 ν -(BO₃)振动所致, 热处理后减弱^[13](图 2)。1 083 和 968 cm⁻¹ 由 Si—O和Si—O—Al(Si₆O₁₈)振动所致^[13](图 2)。 1 030 和 991 cm⁻¹处Si—O振动热处理后减弱明显,尤其是

Tur3[图 2(b)]。不同类型电气石 4 700~4 400 cm⁻¹特征峰 均在4 600, 4 540 和 4 440 cm⁻¹附近^[7-8],结合样品成分,认 为 4 597, 4 537 和 4 441 cm⁻¹归属于(Al, Li, Fe, Mn)^Y-OH₁, 4 343 cm⁻¹是 Al^Z-OH₁ 所致,而4 203和 4 170 cm⁻¹为 (Al, Li, Fe, Mn)^Y-OH₃ 所致。

图 4 热处理前后电气石样品紫外-可见光吸收光谱对比

Fig. 4 Comparison of UV-Vis spectra between before and after heated tourmaline samples

(a): Tur13 250 ℃; (b): Tur11 350 ℃; (c): Tur8 450 ℃; (d): Tur6 500 ℃; (e): Tur3 500 ℃; (f): Tur1 600 ℃

综上, 经 450 ℃以上加热的样品, 3 800~3 500 cm⁻¹的 M—OH 吸收减弱明显, 600 ℃消失(图 2), 4 720 cm⁻¹吸收 峰也消失(图 3)。因此, 3 800~3 500 cm⁻¹的 M—OH 吸收 峰来和 4 720 cm⁻¹吸收峰消失作为经较高温度热处理鉴别依 据。

2.6 致色机理

// c 轴切面热处理前有 715,540 和 417 nm 吸收带;热 处理后,540 nm 宽吸收带减弱[350 ℃;图 4(b)]或消失 [≥450 ℃;图 4(c-f)]。540 nm 吸收带在绿光区,此吸收消 失导致绿光透过,样品呈绿色;715 nm 吸收带向长波方向移 动增加了黄光透过,使得样品显黄色调。⊥c 轴切面吸收光 谱变化不大,仍呈棕褐色「图 1(b)〕。

测试样品为富 Mn 和 Fe,含 Ti 的锂电气石,不含 V, Cr,Cu 和 Ni 元素,应是 Fe,Mn 和 Ti 等致色^[14]。结合前人 研究与本样品呈现的特点,认为 715,540 和 417 nm 吸收带 由 Fe²⁺ *d*—*d* 跃迁(⁵ T_{2g} →⁵ E_g)^[15]; Fe²⁺→Fe³⁺ (IVCT)所 致; Fe²⁺→Ti⁴⁺电荷转移(IVCT)所致,且有 Mn²⁺ 自旋禁阻 跃迁 ⁶ A_{1g} → ⁴ A_{1g} , ⁴ T_{Eg} 产生的 413/414 nm 吸收峰叠 加^[11-15-17]。

蓝色电气石在空气中加热后,540 nm 吸收峰明显增强 (TB1-1^[15]),Fe²⁺/Fe³⁺也由24:1变为2:1(TB1-1^[15]), 合理的解释是:热处理使部分Fe²⁺氧化为Fe³⁺,Fe²⁺数量 减少,Fe³⁺增加,Fe²⁺→Fe³⁺增加,使得540 nm 吸收增强。 绿色样品在空气中加热后,出现540 nm 吸收峰,颜色变为 棕色(TGr-2^[8]),绿色样品以Fe²⁺为主,热处理使部分Fe²⁺ 氧化Fe³⁺,因Fe³⁺出现而产生Fe²⁺→Fe³⁺所致的540 nm 吸 收带,导致样品呈现棕色^[14]。绿色电气石经辐照出现550 nm 附近吸收,因辐照使Fe²⁺氧化为Fe³⁺而产生Fe²⁺→ Fe³⁺电子跃迁所致^[13]。棕色样品在还原气氛热处理后变绿 色,540 nm 吸收消失,即Fe³⁺还原为Fe²⁺,导致Fe²⁺→ Fe³⁺电子跃迁消失。

样品具有高的 Mn 含量, 417 nm 附近的吸收可能存在

 Mn^{2+} *d*—*d*(⁶*A*_{1g}→⁴*A*_{1g}, ⁴*T*_{Eg})自旋禁阻跃迁产生的 413/414 nm 叠加^[17]。热处理使部分 Fe³⁺ 还原为 Fe²⁺, Ti⁴⁺ 还原为 Ti³⁺,导致 Fe²⁺ → Ti⁴⁺ 减少, 417 nm 吸收减弱,但部分 Mn^{3+} 还原为 Mn^{2+} , Mn^{2+} 增加导致 414 nm 吸收峰增强,因 此 417 nm 附近吸收带变化不大。同样,热处理使 Mn^{3+} 还原 成 Mn^{2+} ,从而使得与 Mn^{3+} 有关的 520 nm 吸收也同时消失, 520 nm 吸收带的存在也可能是 520 nm 吸收带呈非对称吸收 峰[图 4(a—f)]的原因。

3 结 论

(1) 褐黄色、褐红色、棕色样品属于富 Mn、Fe 的锂电气 石,在还原、中性条件热处理后变黄绿色,最佳温度在 450~ 500 ℃,恒温时间 3 h。

(2) 热处理后样品可通过红外吸收光谱的 4 720 cm⁻¹, 及 M—OH 所致的 3 800~3 500 cm⁻¹吸收减弱或消失来鉴 别。

(3)样品在可见光范围内有 715,540 和 417 nm 吸收带, 依次由 $Fe^{2+} d - d$ 跃迁, $Fe^{2+} \rightarrow Fe^{3+}$ (IVCT), $Fe^{2+} \rightarrow Ti^{4+}$ (IVCT)所致; 热处理导致 Fe^{3+} 还原为 Fe^{2+} , 使得 $Fe^{2+} \rightarrow$ Fe^{3+} (IVCT)减弱消失, 进而使 540 nm 吸收带消失, 715 和 417 nm 吸收变化不大, 绿光透过样品, 从而样品呈绿色。

References

- [1] Castaneda C, Eeckhout S G, Da Costa G M, et al. Physics and Chemistry of Minerals, 2006, 33(3): 207.
- [2] Cano N F, Gundu Rao T K, Ayala-Arenas J S, et al. Journal of Luminescence, 2018, 205: 324.
- [3] Pezzotta F, Laurs B M. Elements, 2011, 7(5): 333.
- [4] Shigley J E, Cook B C, Laurs B M, et al. Gems and Gemology, 2001, 37(4): 260.
- [5] Ayuso R A, Brown C E. Canadian Mineralogist, 1984, 22(5): 327.
- [6] WANG Jin-jun, TAO Xiao-feng, WANG Wu-jun(王进军,陶晓风,王武军). Acta Petrologica et Mineralogica (岩石矿物学杂志), 2005, 24(4): 319.
- [7] Maneewong A, Seong B S, Shin E J, et al. Journal of the Korean Physical Society, 2016, 68(1): 83.
- [8] Liu X, Feng X, Fan J, et al. Chinese Optics Letters, 2011, 9(8): 90.
- [9] Thongnopkun P, Naowabut P. Journal of Applied Spectroscopy, 2018, 85(4): 616.
- [10] Phichaikamjornwut B, Pongkrapan S, Intarasiri S, et al. Vibrational Spectroscopy, 2019, 103: 1.
- [11] Laurs B M, Simmons W B S, Rossman G R, et al. Gems & Gemology, 2007, 43(4): 314.
- [12] Laurs B M, Zwaan J C, William C B, et al. Gems & Gemology, 2008, 44(1): 4.
- [13] Ahn Y, Seo J, Park J. Vibrational Spectroscopy, 2013, 65(2013): 165.
- [14] da Silva S F, Moura M A, Queiroz H de A, et al. Journal of Geosciences (Czech Republic), 2018, 63(2018): 155.
- [15] Faye G H, Manning P G, Gosselin J R, et al. Canadian Mineralogist, 1974, 12(6): 370.
- [16] Da Fonseca-Zang W A, Zang J W, Hofmeister W. Journal of the Brazilian Chemical Society, 2008, 19(6): 1186.
- [17] Rossman G R, Mattson S M. American Mineralogist, 1986, 71(3): 599.

Spectroscopic Characteristics and Coloring Mechanism of Brown Tourmaline Under Heating Treatment

YUE Su-wei^{1, 2}, YAN Xiao-xu^{1, 2*}, LIN Jia-qi¹, WANG Pei-lian^{1, 2}, LIU Jun-feng³

1. School of Jewelry, Guangzhou City Institute of Technology, Guangzhou 510800, China

2. Institute of Jewelry, Guangzhou City Institute of Technology, Guangzhou 510800, China

3. Chow Tai Fook Jewellery & Gold (Shenzhen) Co., Ltd., Shenzhen 518081, China

Abstract Tourmaline group belongs to the trigonal system and contains a series of Boro-Aluminosilicate minerals. It can be subdivided into lithium tourmaline, magnesium tourmaline, and sodium-manganese tourmaline. Gem grade tourmalines show various colors, due to the occurrence of different trace elements and color centers. Brown tourmalines are selected to be modified into attractive colors by $3 \sim 4$ hours(h) heating treatment under oxidizing or reducing environment. We obtained such results of 250~600 °C step heating-treatment experiments in brown tourmalines: (1) the color of samples changed successively from brown, greenish-brown to brownish-green in $250 \sim 350$ °C; (2) the brown hue continuous faded as the transparency improved in 450~500 °C which indicated the optimum heating temperature; (3) the fracture in all samples enlarged when heated above 600 $^{\circ}$ C; (4) after heating treatment, the dichroism of samples showed green and brown on the direction parallel to c-section, while brown perpendicular to c-section. The color modification mechanism of brown tourmalines before and after heating treatment were investigated in this study by mid-near infrared absorption spectroscopy (IR), X-ray fluorescence spectroscopy (XRF), and ultraviolet-visible spectrophotometry (UV-Vis). The result of XRF indicated that all tournaline samples belonged to the lithium tourmaline group which were rich in Mn and Fe. The mid-IR absorption peaks in natural brown samples were located at 3 800 \sim 3 400, 1 350~1 250, 1 200~800 cm⁻¹ and below 800 cm⁻¹, while the near-IR located at 4 720, 4 597, 4 537, 4 441, 4 343, 4 203, and 4 170 cm⁻¹. The absorption peaks between 3 $800 \sim 3400$ cm⁻¹ attributed to bending and stretching vibration of M-OH (M can be replaced by Al, Mg, Fe, Mn etc.), which decreased after heating treatment and vanished at 600 °C. The water loss in heating treatment caused the weakening of bending vibration of structural water. The UV-Vis-spectra in natural brown samples showed 715, 540, and 417 nm absorption bend on the direction parallel to c-section, caused by $Fe^{2+} d - d ({}^{5}T_{2e} \rightarrow {}^{5}E_{e})$, $Fe^{2+} \rightarrow Fe^{3+}$ inter valence charge transfer (IVCT), and $Fe^{2+} \rightarrow Ti^{4+}$ (IVCT) respectively. In this contribution, all samples contain high Mn content. The presence around 417 nm absorption is possibly influenced by the superposition of 413/414 nm absorption, which attributed to spin-allowed transitions of Mn^{2+} in d-d orbits (${}^{6}A_{1g} \rightarrow {}^{4}A_{1g}$, ${}^{4}T_{Eg}$). After heating treatment, Mn^{3+} was reduced into Mn^{2+} , which led to an augment in 414 nm absorption. Simultaneously, the absorption of 520 nm vanished as the content of Mn^{3+} decreased. The presence of 520 nm absorption might be a reason to form asymmetrical absorption in 540 nm band. After heating treatment above 450 °C, the absorption band of 715 and 417 nm remained unchanged, while 540 nm vanished. The vanishment of 540 nm absorption band could be caused by partial $Fe^{3+} \rightarrow Fe^{2+}$ charge transference in heating treatment, which led to the reduction of $Fe^{2+} \rightarrow Fe^{3+}$ (IVCT) in the direction parallel to the *c*-section. The vanishment of 540 nm absorption band induced transmittance increase for the green-light region, which could be the reason of green color existence after heating treatment.

Keywords Brown tourmaline; Heating Treatment; X-ray fluorescence spectrum; Infrared spectrum; Ultraviolet-visible spectrum

(Received Jul. 19, 2020; accepted Nov. 20, 2020)

* Corresponding author